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This paper considers Platonic solids/polytopes in the real Euclidean space Rn of

dimension 3 � n <1. The Platonic solids/polytopes are described together with

their faces of dimensions 0 � d � n � 1. Dual pairs of Platonic polytopes are

considered in parallel. The underlying finite Coxeter groups are those of simple

Lie algebras of types An, Bn, Cn, F4, also called the Weyl groups or, equivalently,

crystallographic Coxeter groups, and of non-crystallographic Coxeter groups H3,

H4. The method consists of recursively decorating the appropriate Coxeter–

Dynkin diagram. Each recursion step provides the essential information about

faces of a specific dimension. If, at each recursion step, all of the faces are in the

same Coxeter group orbit, i.e. are identical, the solid is called Platonic. The main

result of the paper is found in Theorem 2.1 and Propositions 3.1 and 3.2.

1. Introduction

Platonic solids are understood here as the subset of polytopes

whose vertices are generated, starting from a single point in

R
n, n � 3, by the action of a finite Coxeter group. Platonic

polytopes are distinguished by the fact that their faces fd of

any dimension 0 � d � n� 1 are Platonic solids of lower

dimension, and that they are transformed into each other by

the action of the Coxeter group, i.e. they belong to one orbit of

the corresponding Coxeter group.

It has been known since antiquity that there are five

Platonic solids in R
3 (Coxeter, 1973), namely, the regular

tetrahedron, cube, octahedron, icosahedron and dodecahe-

dron (see Fig. 1). The underlying Coxeter groups1 are A3, B3,

C3 and H3. They are the lowest-dimensional cases which serve

here as transparent examples for our method.

Our method consists of recursive decorations of the nodes

of corresponding Coxeter–Dynkin diagrams. The method was

developed in Moody & Patera (1992) and Champagne et al.

(1995); see also the proceedings Moody & Patera (1993). Here

it is used for the first time for the description of faces of

Platonic solids in the real Euclidean space Rn of dimension n.

Each decoration provides a description of a face representing

the conjugacy class of the faces of the polytope. Nodes of the

diagram stand for reflections rk generating the corresponding

Weyl or Coxeter group. By rk we denote the reflection in

the ðn� 1Þ-dimensional hyperplane in Rn orthogonal to the

simple root �k and containing the origin.

The root systems of finite Coxeter groups of any type

(Deodhar, 1982) allow our method to be extended to higher

dimensions. For R4, a classification of Platonic solids was done

more than a century ago by Schläfli (1855). In this case, the

Coxeter groups are A4, B4, C4, F4 and H4. It is also known that,

in any dimension � 5, there are only three such solids

generated by groups of types An, Bn and Cn, namely the n-

dimensional simplex that is an analog of the tetrahedron,

hypercube and cross-polytope. They correspond to the regular

tetrahedron, cube and octahedron in R3.

In this paper, we derive these results by rather simple rules

for recursive decoration for any connected Coxeter–Dynkin

diagram (Champagne et al., 1995). There are three different

decorations of the nodes of a diagram, namely �, � and �.

Directly from a decoration, one reads the reflections gener-

ating the symmetry group of a face and at the same time the

reflections generating the stabilizer of the face in the Coxeter

group of the diagram. We also provide a constructive method

for building faces fd of dimensions 0 � d � n� 1. Although

we focus on polytopes of dimension d � 3, it is also useful to

consider n ¼ 2 Platonic solids because they occur as two-

dimensional faces of higher-dimensional polytopes. Moreover,

the diagram decoration method can be used in much more

general situations and, indeed, in spaces with a non-Euclidean

metric and even in spaces where the metric is not known

(Moody & Patera, 1995).

Figure 1
The Platonic solids in the three-dimensional case: tetrahedron, cube,
octahedron, dodecahedron, icosahedron. Below each solid there is a seed
point for each Coxeter–Dynkin diagram.

1 Finite reflection groups, called Coxeter groups, are denoted here by symbols
commonly used for respective simple Lie algebras (Humphreys, 1990). Finite
Coxeter groups with no connection to Lie algebras are denoted by H2, H3, H4.
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For every Platonic solid there exists its dual, which is also a

Platonic solid. We describe both members of each dual pair.

For n � 3, the dual pair of An consists of two identical solids

oriented differently in space. The Platonic solids of Bn and Cn

form the dual pair. For F4, H3 and H4, the dual pairs are

obtained by interchanging the roles of the reflections marked

by � and �. They form different solids.

The general idea of the diagram decoration method

(Champagne et al., 1995) is to consider the Coxeter group

WðgÞ of the simple Lie algebra g, that is, the symmetry group

of a given solid, and to identify the subgroup GsðfdÞ that

pointwise stabilizes the given face fd, and the subgroup Gf ðfdÞ,

which is the symmetry group of the face fd. Then we have

GsðfdÞ �Gf ðfdÞ 	 WðgÞ; 0 � d � n� 1: ð1Þ

Since both GsðfdÞ and Gf ðfdÞ are generated by reflections

defined by some of the simple roots of g, it is possible, indeed

convenient, to distinguish by different decoration the simple

roots of the Coxeter–Dynkin diagram defining the reflections

generating the two subgroups. The decorated diagrams allow

one to identify all of the polytope faces that belong to

different orbits of the corresponding Coxeter groups, and to

count how many times each face occurs on the polytope.

We decorate nodes of the Coxeter–Dynkin diagram by one

of the three symbols �, � and �, according to the rules in x2.2.2

Decorated Coxeter–Dynkin diagrams are a powerful

method of great generality (Moody & Patera, 1995), which

could be used to solve other problems, but which so far remain

underused. In Moody & Patera (1992), the method was used

to describe Voronoi and Delone cells in root lattices of all

simple Lie algebras g. It still has to be used to describe the

Voronoi and Delone cells in weight lattices (Conway &

Sloane, 1998), and for other problems as well (Fowler &

Manolopoulos, 2007; McKenzie et al., 1992).

In this paper, we use a version (Champagne et al., 1995) of

the method to describe the Platonic solids together with all of

their faces. In dimension 4, equivalent results can be found

among the entries of Table 3 of Champagne et al. (1995).

Decoration rules are recursive. Starting from a seed

decoration, which provides information about the vertices f0

of the polytope, the procedure consists of modifying the

decoration step by step. At each step, the modified decoration

provides information about the faces of dimension greater by

1. Decoration rules are quite general and are particularly

simple when applied to Platonic polytopes. The same set of

decorations applies to Coxeter–Dynkin diagrams with the

same number of nodes. As the links between diagram nodes

do not affect decoration rules, the links need not be drawn.

Only when working with a specific reflection group, the

decorated diagram with all links removed is viewed super-

imposed on the appropriate Coxeter–Dynkin diagram.

In general, the number of copies of the face fd, contained in

a given polytope, is equal to the ratio of orders of the Coxeter

groups (Champagne et al., 1995),

#fd ¼
jWðgÞj

jGsðfdÞj jGf ðfdÞj
; ð2Þ

where jWj is the order of the corresponding reflection group.

The subgroups Gs and Gf are read as sub-diagrams of the

Coxeter–Dynkin diagram of g. Their nodes are identified by

the appropriate decoration for fd, namely � for reflections

generating Gs, and � for Gf .

The symmetry group of an intersection of two faces, say fk

and fj of dimensions k and j, respectively, is the reflection

group Gf ðfkÞ \Gf ðfjÞ generated by reflections decorated by

black circles and appearing in the diagram of either face. See

the motivating example in x3.1.

Or, to answer the inverse of this question: given a face, say

fk, of a polytope, how many faces fd of higher dimension, k< d,

have fk in common? Frequently, one would want to know the

number of edges originating in the same vertex, k ¼ 0; d ¼ 1,

or the number of faces fd meeting in an edge (k ¼ 1). The

answer is the size of the orbit of the stabilizer StabðfkÞ in WðgÞ

when it is acting on fd. The stabilizer is the reflection group

generated by the reflections labeled by circles of both colours

in the decorated diagram of fk.

2. Preliminaries

2.1. Finite reflection groups

The well known results of the classification of finite

dimensional simple Lie algebras of any rank and type n � 1

are used here only to identify the finite reflection group WðgÞ,

called the Weyl group, or, equivalently, the crystallographic

Coxeter group. In addition, we also consider polytopes with

symmetries of finite non-crystallographic Coxeter groups

denoted by H2, H3, H4, together with their simple root

diagrams.

The geometry of the set of simple roots (relative lengths and

relative angles) in the real Euclidean space Rn is described by

well known conventions implied in drawing the corresponding

Coxeter–Dynkin diagrams (see, for example, Humphreys,

1990).

Reflections generating the Coxeter groups act in the

n-dimensional real Euclidean space Rn spanned by the simple

roots �1; . . . ; �n, according to

rkx ¼ x�
2h�k; xi

h�k; �ki
�k; x 2 Rn; k ¼ 1; 2; . . . ; n; ð3Þ

that is, rk is the reflection in the hyperplane of dimension

n� 1, containing the origin of Rn, and orthogonal to the

simple root �k, k 2 f1; . . . ; ng.

Instead of the �-basis of simple roots, we use the !-basis.

Two bases are linked by the Cartan matrix C (for example,

Humphreys, 1990; McKay & Patera, 1981)
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2 There is a one-to-one correspondence between symbols used to decorate the
Coxeter–Dynkin diagrams here and in previous papers. More precisely, �, �
and � correspond, respectively, to a circle with a dot in the centre, an open
square and a square with a cross in it in Moody & Patera (1992, 1993, 1995),
and to a large open circle, an open square, and a square with a cross in it in
Champagne et al. (1995).



� ¼ C!;C ¼
2ð�ij�jÞ

ð�jj�jÞ

� �
; i; j 2 f1; . . . ; ng: ð4Þ

The decorations described in this paper should be viewed

superimposed on the appropriate Coxeter–Dynkin diagram.

Often, the same decoration applies to several diagrams. It

should therefore be read in the context of that diagram when

some specific information about the face of the polytope needs

to be deduced from it.

2.2. Recursive diagram decoration rules

Decoration rules for connected Coxeter–Dynkin diagrams

are recursive. They apply to diagrams of all simple Lie alge-

bras and to any polytope generated by the corresponding

Coxeter group starting from a single point in Rn. They can

therefore be written without reference to Platonic solids.

The ‘grammar’ for every decoration is as follows:

A node of the diagram can be decorated by �, �, or by �.

In a diagram of n-nodes, there can be up to n rhombi placed

in any node.

Any connected pair of nodes must not carry � and � side by

side.

Assuming that a starting decoration complies with the

grammar rules, the decoration describes a face of dimension

equal to the number of � in it. For dual polytopes, the same

decoration refers to the face of dimensions equal to the

number of �. Usually one starts from vertices, faces of zero

dimension, in which case there is no �.

Decoration rules:

(i) Replace one of the rhombi by �.

(ii) Change to � each � that became adjacent to the new �.

(iii) Repeat steps (i) and (ii) as long as there are any �.

The following theorem is a direct consequence of the

decoration rules.

Theorem 2.1. A polytope has one Coxeter group orbit of

faces fd for every dimension 0 � d � n� 1, i.e. it is Platonic,

provided (i) the Coxeter–Dynkin diagram forms a connected

line with no branches or loops, (ii) the seed decoration has one

rhombus placed at either of the extreme nodes of the Coxeter–

Dynkin diagram.

Proof. The Coxeter diagram describes all the finite

symmetry groups in dimensions n<1.

The Platonic solids are polytopes with vertices generated by

the action of only the Coxeter group starting from one vertex

(seed point). Since Platonic solids have to have only a single

orbit of faces of dimension 0 � d< n the decoration rules

must allow only one decoration for a diagram with d black

circles. It is a straightforward consequence of the decoration

rules that the diagram has to have nodes in one line and the

seed point for the decoration has to have nonzero value

attached to the extreme points. In all cases there are precisely

two possibilities except for Bn and Cn; where out of four

possibilities the interchange between long and short roots

reduced to two possibilities. &

Corollary 2.1. Coxeter–Dynkin diagrams that give rise to

Platonic solids in Rn, where n � 3, are of the types

2.3. Dual polytopes

In this paper, we define dual polytopes and their faces using

decorated Coxeter–Dynkin diagrams. The role of decoration

elements � and � are reversed in the dual polytope. That is, �

specifies reflections that generate the symmetry group Gf of

the dual face, while � provides the generating reflections of the

subgroup Gs that stabilizes the face pointwise.

The dual polytope of a Platonic polytope is also Platonic.

Specifically, we have dual pairs of Platonic polytopes in Rn,

n � 3,

An: both polytopes coincide, but are differently oriented in

R
n;

Bn: Bn and Cn polytopes are dual to each other in Rn;

F4: the dual polytopes in R4 are different (see Table 4);

H3: the dual polytopes are the icosahedron and dodecahe-

dron in R3;

H4: the dual polytopes are different in R4 (see Table 4).

A particular decoration that carries information about a

face fd of a polytope in Rn can be read as information about

the face of the dual polytope, say ~ffn�d�1.

3. Platonic solids

3.1. Motivating example: Platonic solids in dimension 3

Let us illustrate the decoration method on the transparent

example before presenting the general rules. Consider the

classical Platonic solids in R3. Connected Coxeter–Dynkin

diagrams of the groups, generated by three reflections, are of

the types A3, B3, C3 and H3 (see Corollary 2.1).

We assume that diagram nodes are numbered 1; 2; 3 left to

right, that each node represents the corresponding reflection

r1, r2, r3 acting in R3. Decorations described in this subsection

should be viewed superimposed on any of the four diagrams

(Corollary 2.1).

Let the seed point (face f0) be either !1 or !3, corre-

sponding to the dual pair of polytopes. We denote by � the

reflections that move the seed point and by � the reflections
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Table 1
Number j�j of nonzero roots of simple Lie algebras g and the orders jWj
of their Weyl group.

The number of roots and the orders of the three non-crystallographic Coxeter
groups are shown.

g An Bn Cn F4 H2 H3 H4

j�j nðnþ 1Þ 2n2 2n2 48 10 120 1202

jWj ðnþ 1Þ! n! 
 2n n! 
 2n 27 
 32 2 
 5 23 
 3 
 5 26 
 32 
 52



that stabilize it. Consider two seed-point decorations of all

four diagrams (Corollary 2.1), namely

� � � seed point!1

� � � seed point!3:

Here, � stands for the seed-point reflection. The sub-diagram

decorated by �� identifies reflections generating Gs. The

symmetry group Gf ðf0Þ ¼ 1 of the face f0 is trivial, the face is

just a point.

The orders of reflection groups A3;B3;H3 in R3 are shown

in Table 1.

The groups Gs stabilizing !1 are, respectively,

jWðA2Þj ¼ 6; jWðB2Þj ¼ jWðC2Þj ¼ 8; jWðH2Þj ¼ 10: ð5Þ

Based on the number of vertices, we have a tetrahedron for

A3, an octahedron for B3 and C3, and a dodecahedron for H3.

The groups Gs stabilizing !3 are all of type A2. Hence, the

numbers of vertices are those of a tetrahedron for A3, a cube

for B3 and C3, and an icosahedron for H3. The dual tetrahedra

of A3 are differently oriented in R3, but otherwise are iden-

tical.

The second step describes the edges of the solids. The

decorations are

� � �

� � �

The symmetry group generated by r1 refers to the edge with

end points !1 and r1!1. For the dual polytope, the symmetry

group is generated by r3, and it refers to the edge with end

points !3 and r3!3. Note that this description of edges is

independent of the Coxeter groups used in Corollary 2.1.

In all cases, the group Gsðf1Þ �Gf ðf1Þ is WðA1 � A1Þ of

order 4. Consequently, the number of edges is jWðgÞj=4. We

get 6 for A3 (tetrahedron), 12 for B3 and C3 (cube and octa-

hedron) and 30 for H3 (icosahedron and dodecahedron).

The final step in the decoration

� � � ð6Þ

� � � ð7Þ

describes the two-dimensional faces f2. The sub-diagram �� in

equation (6) is the group Gf ðf2Þ ¼ WðA2Þ of order

jWðA2Þj ¼ 6 for all cases.
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Table 2
Properties of Platonic solids in R3.

Each line describes one face fd in the Platonic solids, with either of the symmetry groups A3, B3, H3. Reflections generating Gf and Gs are in the second and third
columns. d contains the dimension of the face, v ¼ 2� d shows the dimension of the corresponding face of the dual Platonic polytope. NðA3Þ, NðB3Þ and NðH3Þ

contain the number of times the face fd occurs in the polytope. Vertically aligned marks in the last column indicate which faces belong to the same polytope of the
dual pair.

Face Gf Gs d v NðA3Þ NðB3Þ NðH3) Platonics

� � � 1 r2; r3 0 2 4 6 12
p

� � � 1 r1; r2 0 2 4 8 20
p

� � � r1 r3 1 1 6 12 30
p

� � � r3 r1 1 1 6 12 30
p

� � � r1; r2 1 2 0 4 8 20
p

� � � r2; r3 1 2 0 4 6 12
p

Table 3
Properties of the four-dimensional Platonic solids.

Underlying reflection groups in R4 are of the types A4, B4, F4, H4. For conventions, see the caption of Table 2.

Face Gf Gs d v NðA4Þ NðB4Þ NðF4Þ NðH4Þ Platonics

� � � � 1 r2; r3; r4 0 3 5 8 24 120
p

� � � � 1 r1; r2; r3 0 3 5 16 24 600
p

� � � � r1 r3; r4 1 2 10 24 96 720
p

� � � � r4 r1; r2 1 2 10 32 96 1200
p

� � � � r1; r2 r4 2 1 10 32 96 1200
p

� � � � r3; r4 r1 2 1 10 24 96 720
p

� � � � r1; r2; r3 1 3 0 5 16 24 600
p

� � � � r2; r3; r4 1 3 0 5 8 24 120
p

Table 4
Summary of Proposition 3.1.

The first column contains the names of the four-dimensional Platonic
polytopes and their duals; the second column shows the number of vertices
in the polytope. The underlying symmetry group for each line of the table can
be identified by comparing the number of vertices #f0 with the corresponding
entries in Table 3. The third column contains the number #f1ðf0Þ of edges
meeting at each vertex, and the last column contains the number #f2ðf1Þ of
two-dimensional faces meeting at each edge.

Name of polytope #f0 #f1ðf0Þ #f2ðf1Þ

Pentatope 5 4 3
16-cell 8 6 4
Tessaract 16 4 3
24-cell 24 8 3
600-cell 120 20 5
120-cell 600 4 3



#f2 :
jWðA3Þj

jWðA2Þj
¼ 4;

jWðB3Þj

jWðA2Þj
¼
jWðC3Þj

jWðA2Þj
¼ 8;

jWðH3Þj

jWðA2jÞ
¼ 20:

The same sub-diagram in equation (7) stands for Gf ðf2Þ ¼

WðA2Þ in the case of A3, Gf ðf2Þ ¼ WðC2Þ for B3 and C3, and

Gf ðf2Þ ¼ WðH2Þ for H3. Therefore

#~ff2 :
jWðA3Þj

jWðA2Þj
¼ 4;

jWðB3Þj

jWðC2Þj
¼
jWðC3Þj

jWðC2Þj
¼ 6;

jWðH3Þj

jWðH2jÞ
¼ 12:

The shape of face f2 can be easily determined from the relative

angles of the mirrors r1 and r2 acting on !1 or from reflections

r2 and r3 acting on !3.

A summary of properties of Platonic solids in R3 and their

faces is shown in Table 2.

Example 1. The dual pair of Platonic solids of A3 consists of

two tetrahedra differently oriented in R3, their seed points

being !1 and !3.

The vertices of the two tetrahedra are as follows:

!1;�!1 þ !2;�!2 þ !3;�!3

!3;�!3 þ !2;�!2 þ !1;�!1:

3.2. Platonic solids in dimension 4

Connected Coxeter–Dynkin diagrams (nodes are connected

in one line) of the groups generated by four reflections are of

the types A4, B4, C4, F4 and H4 (see Corollary 2.1). One may

notice that the diagram of type D4 is excluded.

Using Table 2 conventions, properties of the four-

dimensional Platonic solids, together with their duals, are

summarized in Table 3.

Let us answer the question posed in x1: how many edges f1

meet in a vertex f0 of any Platonic solid?

Decorations of Coxeter–Dynkin diagrams for four-

dimensional Platonic solids and their duals are:

f0 : � � � � f1 : � � � � ð8Þ

~ff0 : � � � � ~ff1 : � � � � ð9Þ

From Table 3, we read the stabilizers of faces

Gsðf0Þ ¼ hr2; r3; r4i Gsðf1Þ ¼ hr3; r4i ð10Þ

Gsð
~ff0Þ ¼ hr1; r2; r3i Gsð

~ff1Þ ¼ hr1; r2i: ð11Þ

The edges originating in f0 or ~ff0 are generated by the stabilizer

of f0 or ~ff0, respectively.

They are equal to Gsðf1Þ for equation (10) and Gsð
~ff1Þ for

equation (11).

The formula for the number of edges meeting in one vertex

can be written as

#f1ðf0Þ ¼
jGsðf0Þj

jGsðf1Þj
; ð12Þ

or more generally, if we consider fdðfd�1Þ of faces fd having in

common faces fd�1 for 1 � d � n� 2:

Proposition 3.1. The number of faces fd meeting in a face

fd�1 for d 2 f1; . . . n� 2g is equal to the ratio of orders of

Coxeter subgroups GsðfdÞ;Gsðfd�1Þ, which stabilize a given

face fd; fd�1, respectively,

#fdðfd�1Þ ¼
jGsðfd�1Þj

jGsðfdÞj
: ð13Þ

The groups Gsðf1Þ for equation (8) are, respectively, WðA2Þ;
WðB2Þ; WðA2Þ and WðH2Þ, and for equation (9) Gsð

~ff1Þ ¼

WðA2Þ.

Table 4 summarizes this proposition.

Both the pentatope and 24-cell are self-dual, the 16-cell is

dual to the tessaract, and the 600-cell and 120-cell are dual to

each other (Coxeter, 1973).

3.3. Platonic solids in dimension �5

There are only three types of Platonic solids for dimension

more than 4, namely the simplex, hypercube and cross-

polytope. The simplex is self-dual, and the cross-polytope and

hypercube are dual to each other. The corresponding

Coxeter–Dynkin diagrams (Corollary 2.1) are of the types

An;Bn and Cn.

Using Table 2 conventions, the properties of Platonic solids

of dimension� 5, together with their duals, are summarized in

Table 5.

Table 6 summarizes this Proposition 3.1 for any

n-dimensional polytope.
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Table 5
Properties of Platonic solids of diemsions � 5.

Underlying reflection groups in Rn
ðn � 5Þ are of the types An, Bn.

Face Gf Gs d v NðAnÞ NðBnÞ Platonics

� � � . . . � � 1 r2; . . . ; rn 0 n� 1 ðnþ 1Þ!=n! 2nn!=2n�1ðn� 1Þ!
p

� � � . . . � � 1 r1; . . . ; rn�1 0 n� 1 ðnþ 1Þ!=n! 2nn!=n!
p

� � � . . . � � r1 r3; . . . ; rn 1 n� 2 ðnþ 1Þ!=2!ðn� 1Þ! 2nn!=2!2n�2ðn� 2Þ!
p

� � � . . . � � rn r1; . . . ; rn�2 1 n� 2 ðnþ 1Þ!=ðn� 1Þ!2! 2nn!=ðn� 1Þ!2!
p

� � � . . . � � r1; r2 r4; . . . ; rn 2 n� 3 ðnþ 1Þ!=3!ðn� 2Þ! 2nn!=3!2n�3ðn� 3Þ!
p

� � � . . . � � rn�1; rn r1; . . . ; rn�3 2 n� 3 ðnþ 1Þ!=ðn� 2Þ!3! 2nn!=ðn� 2Þ!222!
p

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � . . . � � r1; . . . ; rn�2 rn n� 2 1 ðnþ 1Þ!=ðn� 1Þ!2! 2nn!=2!ðn� 1Þ!
p

� � � . . . � � r3; . . . ; rn r1 n� 2 1 ðnþ 1Þ!=2!ðn� 1Þ! 2nn!=2!2n�2ðn� 2Þ!
p

� � � . . . � � r1; ; rn�1 1 n� 1 0 ðnþ 1Þ!=n! 2nn!=n!
p

� � � . . . � � r2; . . . ; rn 1 n� 1 0 ðnþ 1Þ!=n! 2nn!=2n�1ðn� 1Þ!
p



Analogously to Proposition 3.1, we can give the formula for

finding the number of faces fd meeting at face fc, where c< d.

Proposition 3.2. The number of faces fd meeting at face fc

for 0 � c< d< n� 2 is equal to the ratio of orders of Coxeter

subgroups GsðfcÞ;GsðfdÞ, which stabilize a given face fc and fd,

respectively,

#fdðfcÞ ¼
jGsðfcÞj

jGsðfdÞj
: ð14Þ

We now consider the four-dimensional faces appearing in

five-dimensional polytopes.

Diagrams of the face f4 are:

� � � � �

� � � � �

The shape of face f4 is determined from the relative angles of

mirrors r1; . . . ; r4 acting on !1, and from reflections r2; . . . ; r5

acting on !5. Using Tables 3 and 4, one can see from the sub-

diagram � � � � that, for A5, faces are pentatopes, and for B5,

either 16-cells or tessaracts.

4. Concluding remarks

A seed decoration is often applied to several disconnected

Coxeter diagrams. See an example in x3.2. The same is true for

recursive decorations that follow from the seed. Therefore, the

set of such decorations could be viewed as a ‘generic polytope’

pertinent to all Coxeter groups with the same connectivity of

their Coxeter–Dynkin diagrams. Can anything be learned

from the generic set of decorations?

In this paper, we focused on Coxeter groups whose

diagrams are connected. In general, the decoration rules can

be used for polytopes of Lie algebras that are semi-simple but

not simple, i.e. their Coxeter–Dynkin diagrams are discon-

nected. In this case, each connected component must have its

own seed point, indicated in the initial decoration. Conse-

quently, there are several orbits of edges, and hence such

polytopes are never Platonic.

The diagram decoration method used here can

also be applied for other polytopes generated by

finite reflection groups, for example the Archime-

dean polytopes (see table in Champagne et al., 1995)

and the root polytopes (Cellini & Marietti, 2014;

Mészáros, 2011).

In Champagne et al. (1995), the authors considered

semiregular polytopes in three and four dimensions.

It would be interesting to describe semiregular

polytopes in a higher dimension.

In recent years evidence has been obtained that

there exist in nature molecules with imperfect

symmetries (Bodner et al., 2013, 2014; Fowler & Manolo-

poulos, 2007; McKenzie et al., 1992) of the WðgÞ type, not

necessarily Platonic. They could be considered as WðgÞ

symmetries broken to the symmetry of a subgroup.
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Table 6
Summary of Proposition 3.1 for any n-dimensional polytope.

The first column contains the names of the n-dimensional Platonic polytopes and their
duals; the second column shows the number of vertices in the polytope; the remaining
columns contain the number of faces fd meeting at each face fd�1 for d 2 f1; . . . ; n� 2g,
n � 5

Name of polytope #f0 #f1ðf0Þ #f2ðf1Þ . . . #fn�3ðfn�4Þ #fn�2ðfn�3Þ

Simplex [ðnþ 1Þ-cell] nþ 1 n n� 1 . . . 4 3
Cross-polytope (2n-cell) 2n 2ðn� 1Þ 2ðn� 2Þ . . . 8 4
Hypercube (2n-cell) 2n n n� 1 . . . 4 3
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